ogstools.meshlib.xdmf_reader module#
This file provides an override to meshios XDMF Reader since it misses a feature to handle hyperslabs (there are two ways to handle hyperslab: the common documented here and the way paraview supports it (documentation missing).
Example:
2D_single_fracture_HT.h5:/meshes/2D_single_fracture/temperature|0 0:1 1:1 190:97 190
to be read like:
| start : stride : count : end
- class ogstools.meshlib.xdmf_reader.DataItem[source]#
- Bases: - ABC- Abstract base class for all classes that end with DataItem. - rawdata_path: Path#
 
- class ogstools.meshlib.xdmf_reader.H5DataItem[source]#
- Bases: - DataItem- A class to handle the data item in the xdmf file that references to a h5 file. With init only the xdmf meta data is read. (light computation) With selected_values the requested values are read from h5 file (heavy computation) - Parameters:
- file_info – The file_info string from the XDMF file example: 2D_single_fracture_HT.h5:/meshes/2D_single_fracture/geometry|0 0 0:1 1 1:1 190 3:97 190 3 
- xdmf_path – Path to the xdmf file that references to the h5 file 
 
 - __init__(file_info, xdmf_path)[source]#
- Parameters:
- file_info (str) – The file_info string from the XDMF file example: 2D_single_fracture_HT.h5:/meshes/2D_single_fracture/geometry|0 0 0:1 1 1:1 190 3:97 190 3 
- xdmf_path (Path) – Path to the xdmf file that references to the h5 file 
 
 
 - __getitem__(args)[source]#
- Reads value from HDF5 file based on given selection. - param args: See numpy array indexing https://numpy.org/doc/stable/user/basics.indexing.html# :returns: A numpy array (sliced) of the requested data for all timesteps - Return type:
- ndarray 
 
 - selected_values()[source]#
- Returns all values of the DataItem that are selected in the xdmf file. An empty selection means all values are read. - In the xdmf file with <DataItem> tag you optionally find a string containing the 1.h5filename, 2. name of h5 group, 3. selection e.g. 2D_single_fracture_HT.h5:/meshes/2D_single_fracture/geometry|0 0 0:1 1 1:1 190 3:97 190 3 The selection here is: 0 0 0:1 1 1:1 190 3:97 190 3 The meaning is: [(offset(0,0,0): step(1,1,1) : end(1,190,3) : of_data_with_size(97,190,30))] - Returns:
- A numpy array (sliced) of the requested data for all timesteps 
- Return type:
- ndarray 
 
 
