from typing import Literal
import matplotlib.pyplot as plt
import numpy as np
import pyvista as pv
from ogstools.variables import Vector
from .shared import setup, spatial_quantity
def _vectorfield(
mesh: pv.DataSet,
variable: Vector,
projection: int | None = None,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""
Plot the vector streamlines or arrows on a matplotlib axis.
:param mesh: Mesh containing the vector variable
:param variable: Vector variable to visualize
:param projection: Index of flat dimension (e.g. 2 for z axis),
gets automatically determined if not given
"""
if (n_pts := setup.num_streamline_interp_pts) is None:
return (np.zeros(1),) * 5
mean_normal = np.abs(np.mean(mesh.extract_surface().cell_normals, axis=0))
if projection is None:
projection = int(np.argmax(mean_normal))
i_id, j_id = np.delete([0, 1, 2], projection)
_mesh = mesh.copy()
for key in _mesh.point_data:
if key not in [variable.data_name, variable.mask]:
del _mesh.point_data[key]
i_pts = np.linspace(mesh.bounds[2 * i_id], mesh.bounds[2 * i_id + 1], n_pts)
j_pts = np.linspace(mesh.bounds[2 * j_id], mesh.bounds[2 * j_id + 1], n_pts)
i_size = i_pts[-1] - i_pts[0]
j_size = j_pts[-1] - j_pts[0]
grid = pv.Plane(_mesh.center, mean_normal, i_size, j_size, *[n_pts - 1] * 2)
# fixes orientation of plane
if projection != 2:
grid = grid.rotate_vector(mean_normal, 90)
# fix cases where the plane misaligns with the mesh by floating point error
grid.points = grid.points.astype("float64")
offset = np.asarray(grid.center) - np.asarray(_mesh.center)
grid = grid.translate(-offset)
grid = grid.sample(_mesh, pass_cell_data=False)
values = variable.transform(grid.point_data[variable.data_name])
values[np.argwhere(grid["vtkValidPointMask"] == 0), :] = np.nan
if np.shape(values)[-1] == 3:
values = np.delete(values, projection, 1)
val = np.reshape(values, (n_pts, n_pts, 2))
if variable.mask in grid.point_data:
mask = np.reshape(grid.point_data[variable.mask], (n_pts, n_pts))
val[mask == 0, :] = 0
val_norm = np.linalg.norm(np.nan_to_num(val), axis=-1)
lw = 2.5 * val_norm / max(1e-16, np.max(val_norm)) * setup.linewidth
i_grid, j_grid = spatial_quantity(mesh).transform(np.meshgrid(i_pts, j_pts))
return (i_grid, j_grid, val[..., 0], val[..., 1], lw)
[docs]
def streamlines(
mesh: pv.DataSet,
ax: plt.Axes,
variable: Vector,
projection: int | None = None,
) -> None:
"""
Plot the vector streamlines on a matplotlib axis.
:param mesh: Mesh containing the vector variable
:param ax: Matplotlib axis to plot onto
:param variable: Vector variable to visualize
:param projection: Index of flat dimension (e.g. 2 for z axis),
gets automatically determined if not given
"""
if (setup.num_streamline_interp_pts) is None:
return
x_g, y_g, u, v, lw = _vectorfield(mesh, variable, projection)
ax.streamplot(x_g, y_g, u, v, color="k", linewidth=lw, density=1.5)
[docs]
def quiver(
mesh: pv.DataSet,
ax: plt.Axes,
variable: Vector,
projection: int | None = None,
glyph_type: Literal["arrow", "line"] = "arrow",
) -> None:
"""
Plot arrows or lines corresponding to vectors on a matplotlib axis.
:param mesh: Mesh containing the vector variable
:param ax: Matplotlib axis to plot onto
:param variable: Vector variable to visualize
:param projection: Index of flat dimension (e.g. 2 for z axis),
gets automatically determined if not given
:param glyph_type: Whether to plot arrows or lines.
"""
x_g, y_g, u, v, _ = _vectorfield(mesh, variable, projection)
line_args = (
{"headlength": 0, "headaxislength": 0, "headwidth": 1, "pivot": "mid"}
if glyph_type == "line"
else {}
)
ax.quiver(x_g, y_g, u, v, **line_args, scale=1.0 / 0.03)