ogstools.variables.mesh_dependent module#
Functions related to stress analysis which can be only applied to a mesh.
- ogstools.variables.mesh_dependent.fluid_pressure_criterion(mesh, variable)[source]#
Return the fluid pressure criterion.
Defined as the difference between fluid pressure and minimal principal stress (compression positive). Requires “pressure” to be available in the mesh’s point_data.
\[F_{p} = p_{fl} - \sigma_{min}\]- Return type:
PlainQuantity
- ogstools.variables.mesh_dependent.dilatancy_critescu(mesh, variable, a=-0.01697, b=0.8996, effective=False)[source]#
Return the dilatancy criterion defined as:
\[F_{dil} = \frac{\tau_{oct}}{\sigma_0} - a \left( \frac{\sigma_m}{\sigma_0} \right)^2 - b \frac{\sigma_m}{\sigma_0}\]for total stresses and defined as:
\[F'_{dil} = \frac{\tau_{oct}}{\sigma_0} - a \left( \frac{\sigma'_m}{\sigma_0} \right)^2 - b \frac{\sigma'_m}{\sigma_0}\]for effective stresses. Requires “pressure” to be available in the mesh’s point_data.
<https://www.sciencedirect.com/science/article/pii/S0360544222000512?via%3Dihub>
- Return type:
PlainQuantity
- ogstools.variables.mesh_dependent.dilatancy_alkan(mesh, variable, b=0.04, effective=False)[source]#
Return the dilatancy criterion defined as:
\[F_{dil} = \tau_{oct} - \tau_{max} \cdot b \frac{\sigma'_m}{\sigma_0 + b \cdot \sigma'_m}\]for total stresses and defined as:
\[F_{dil} = \tau_{oct} - \tau_{max} \cdot b \frac{\sigma'_m}{\sigma_0 + b \cdot \sigma'_m}\]for effective stresses. Requires “pressure” to be available in the mesh’s point_data.
<https://www.sciencedirect.com/science/article/pii/S1365160906000979>
- Return type:
PlainQuantity | ndarray