ogstools.variables.mesh_dependent module#

Functions related to stress analysis which can be only applied to a mesh.

ogstools.variables.mesh_dependent.fluid_pressure_criterion(mesh)[source]#

Compute the fluid pressure criterion.

Requires “sigma” and “pressure” to be in the mesh and having the same units. The criterion is defined as:

fluid pressure - minimal principal stress (compression positive).

\[F_{p} = p_{fl} - \sigma_{min}\]
Return type:

ndarray

ogstools.variables.mesh_dependent.dilatancy_critescu(mesh, a=-0.01697, b=0.8996, effective=False)[source]#

Compute the dilatancy criterion.

Requires “sigma” and “pressure” to be in the mesh (in Pa).

For total stresses it is defined as:

\[F_{dil} = \frac{\tau_{oct}}{\sigma_0} - a \left( \frac{\sigma_m}{\sigma_0} \right)^2 - b \frac{\sigma_m}{\sigma_0}\]

For effective stresses it is defined as:

\[F'_{dil} = \frac{\tau_{oct}}{\sigma_0} - a \left( \frac{\sigma'_m}{\sigma_0} \right)^2 - b \frac{\sigma'_m}{\sigma_0}\]

<https://www.sciencedirect.com/science/article/pii/S0360544222000512?via%3Dihub>

Return type:

ndarray

ogstools.variables.mesh_dependent.dilatancy_alkan(mesh, b=0.04, tau_max=33e6, effective=False)[source]#

Compute the dilatancy criterion.

Requires “sigma” and “pressure” to be in the mesh (in Pa).

For total stresses it is defined as:

\[F_{dil} = \tau_{oct} - \tau_{max} \cdot b \frac{\sigma'_m}{\sigma_0 + b \cdot \sigma'_m}\]

For effective stresses it is defined as:

\[F_{dil} = \tau_{oct} - \tau_{max} \cdot b \frac{\sigma'_m}{\sigma_0 + b \cdot \sigma'_m}\]

<https://www.sciencedirect.com/science/article/pii/S1365160906000979>

Return type:

ndarray

ogstools.variables.mesh_dependent.angles(mesh, center=(0.0, 0.0, 0.0), normal=(0.0, 0.0, 1.0))[source]#

Compute the angles of the mesh’s points around a normal and center.

Parameters:
  • mesh (UnstructuredGrid) – For the points of this mesh the angles are computed.

  • center (Sequence) – Center of rotation.

  • normal (Sequence) – Normal axis of rotation.

Return type:

ndarray