Feflowlib: Hydro-thermal model - conversion and simulation#

Section author: Julian Heinze (Helmholtz Centre for Environmental Research GmbH - UFZ)

In this example we show how a simple hydro thermal FEFLOW model can be converted to a pyvista.UnstructuredGrid and then be simulated in OGS.

  1. Necessary imports

import tempfile
import xml.etree.ElementTree as ET
from pathlib import Path

import ifm_contrib as ifm
import pyvista as pv

import ogstools as ogs
from ogstools.examples import feflow_model_2D_HT_model
from ogstools.feflowlib import (
    convert_properties_mesh,
    hydro_thermal,
    setup_prj_file,
)
from ogstools.feflowlib.tools import (
    extract_point_boundary_conditions,
    get_material_properties_of_HT_model,
)

1. Load a FEFLOW model (.fem) as a FEFLOW document, convert and save it. More details on how the conversion function works can be found here: ogstools.feflowlib.convert_properties_mesh.

feflow_model = ifm.loadDocument(str(feflow_model_2D_HT_model))
feflow_pv_mesh = convert_properties_mesh(feflow_model)
feflow_temperature = ogs.variables.temperature.replace(data_name="P_TEMP")
ogs.plot.contourf(feflow_pv_mesh, feflow_temperature)

temp_dir = Path(tempfile.mkdtemp("feflow_test_simulation"))
feflow_mesh_file = temp_dir / "2D_HT_model.vtu"
feflow_pv_mesh.save(feflow_mesh_file)
print(feflow_pv_mesh)
plot F feflowlib HT simulation
UnstructuredGrid (0x7cd46b5849a0)
  N Cells:    1565
  N Points:   832
  X Bounds:   -2.500e+02, 9.000e+02
  Y Bounds:   3.500e+02, 6.500e+02
  Z Bounds:   0.000e+00, 0.000e+00
  N Arrays:   34
  1. Extract the point conditions (see: ogstools.feflowlib.extract_point_boundary_conditions).

point_BC_dict = extract_point_boundary_conditions(temp_dir, feflow_pv_mesh)
# Since there can be multiple point boundary conditions on the bulk mesh, they are plotted iteratively.
plotter = pv.Plotter(shape=(len(point_BC_dict), 1))
for i, (path, boundary_condition) in enumerate(point_BC_dict.items()):
    boundary_condition.save(path)
    plotter.subplot(i, 0)
    plotter.add_mesh(boundary_condition, scalars=Path(path).stem)
    plotter.view_xy()
plotter.show()
plot F feflowlib HT simulation
  1. Setup a prj-file (see: ogstools.feflowlib.setup_prj_file) to run a OGS-simulation.

path_prjfile = feflow_mesh_file.with_suffix(".prj")
prj = ogs.Project(output_file=path_prjfile)
# Get the template prj-file configurations for a hydro thermal process.
HT_model = hydro_thermal(temp_dir / "sim_2D_HT_model", prj, dimension=2)
# Include the mesh specific configurations to the template.
model = setup_prj_file(
    bulk_mesh_path=feflow_mesh_file,
    mesh=feflow_pv_mesh,
    material_properties=get_material_properties_of_HT_model(feflow_pv_mesh),
    process="hydro thermal",
    model=HT_model,
)
# The model must be written before it can be run.
model.write_input(path_prjfile)
# Print the prj-file as an example.
model_prjfile = ET.parse(path_prjfile)
ET.dump(model_prjfile)
<OpenGeoSysProject>
    <meshes>
        <mesh>2D_HT_model.vtu</mesh>
        <mesh>P_BC_FLOW.vtu</mesh>
        <mesh>P_BC_HEAT.vtu</mesh>
    </meshes>
    <processes>
        <process>
            <name>HydroThermal</name>
            <type>HT</type>
            <integration_order>3</integration_order>
            <specific_body_force>0 0</specific_body_force>
            <secondary_variables>
                <secondary_variable internal_name="darcy_velocity" output_name="v" />
            </secondary_variables>
            <process_variables>
                <temperature>temperature</temperature>
                <pressure>HEAD_OGS</pressure>
            </process_variables>
        </process>
    </processes>
    <media>
        <medium id="0">
            <phases>
                <phase>
                    <type>AqueousLiquid</type>
                    <properties>
                        <property>
                            <name>specific_heat_capacity</name>
                            <type>Constant</type>
                            <value>4200000.0</value>
                        </property>
                        <property>
                            <name>thermal_conductivity</name>
                            <type>Constant</type>
                            <value>0.65</value>
                        </property>
                        <property>
                            <name>viscosity</name>
                            <type>Constant</type>
                            <value>1</value>
                        </property>
                        <property>
                            <name>density</name>
                            <type>Constant</type>
                            <value>1</value>
                        </property>
                    </properties>
                </phase>
                <phase>
                    <type>Solid</type>
                    <properties>
                        <property>
                            <name>storage</name>
                            <type>Constant</type>
                            <value>0.0</value>
                        </property>
                        <property>
                            <name>density</name>
                            <type>Constant</type>
                            <value>1</value>
                        </property>
                        <property>
                            <name>specific_heat_capacity</name>
                            <type>Constant</type>
                            <value>1633000.0</value>
                        </property>
                        <property>
                            <name>thermal_conductivity</name>
                            <type>Constant</type>
                            <value>3.0</value>
                        </property>
                    </properties>
                </phase>
            </phases>
            <properties>
                <property>
                    <name>permeability</name>
                    <type>Constant</type>
                    <value>1.1574074074074073e-05 1.1574074074074073e-05</value>
                </property>
                <property>
                    <name>porosity</name>
                    <type>Constant</type>
                    <value>0.0</value>
                </property>
                <property>
                    <name>thermal_conductivity</name>
                    <type>EffectiveThermalConductivityPorosityMixing</type>
                </property>
                <property>
                    <name>thermal_transversal_dispersivity</name>
                    <type>Constant</type>
                    <value>0.5</value>
                </property>
                <property>
                    <name>thermal_longitudinal_dispersivity</name>
                    <type>Constant</type>
                    <value>5.0</value>
                </property>
            </properties>
        </medium>
    </media>
    <time_loop>
        <processes>
            <process ref="HydroThermal">
                <nonlinear_solver>basic_picard</nonlinear_solver>
                <convergence_criterion>
                    <type>DeltaX</type>
                    <norm_type>NORM2</norm_type>
                    <abstol>1e-16</abstol>
                </convergence_criterion>
                <time_discretization>
                    <type>BackwardEuler</type>
                </time_discretization>
                <time_stepping>
                    <type>FixedTimeStepping</type>
                    <t_initial>0</t_initial>
                    <t_end>1e11</t_end>
                    <timesteps>
                        <pair>
                            <repeat>1</repeat>
                            <delta_t>1e10</delta_t>
                        </pair>
                        <pair>
                            <repeat>1</repeat>
                            <delta_t>1e10</delta_t>
                        </pair>
                    </timesteps>
                </time_stepping>
            </process>
        </processes>
        <output>
            <type>VTK</type>
            <prefix>/tmp/tmpclvdkfizfeflow_test_simulation/sim_2D_HT_model</prefix>
            <timesteps>
                <pair>
                    <repeat>1</repeat>
                    <each_steps>1</each_steps>
                </pair>
            </timesteps>
            <variables />
        </output>
    </time_loop>
    <parameters>
        <parameter>
            <name>T0</name>
            <type>Constant</type>
            <value>273.15</value>
        </parameter>
        <parameter>
            <name>p0</name>
            <type>Constant</type>
            <value>0</value>
        </parameter>
        <parameter>
            <name>P_BC_FLOW</name>
            <type>MeshNode</type>
            <mesh>P_BC_FLOW</mesh>
            <field_name>P_BC_FLOW</field_name>
        </parameter>
        <parameter>
            <name>P_BC_HEAT</name>
            <type>MeshNode</type>
            <mesh>P_BC_HEAT</mesh>
            <field_name>P_BC_HEAT</field_name>
        </parameter>
    </parameters>
    <process_variables>
        <process_variable>
            <name>temperature</name>
            <components>1</components>
            <order>1</order>
            <initial_condition>T0</initial_condition>
            <boundary_conditions>
                <boundary_condition>
                    <type>Dirichlet</type>
                    <mesh>P_BC_HEAT</mesh>
                    <parameter>P_BC_HEAT</parameter>
                </boundary_condition>
            </boundary_conditions>
        </process_variable>
        <process_variable>
            <name>HEAD_OGS</name>
            <components>1</components>
            <order>1</order>
            <initial_condition>p0</initial_condition>
            <boundary_conditions>
                <boundary_condition>
                    <type>Dirichlet</type>
                    <mesh>P_BC_FLOW</mesh>
                    <parameter>P_BC_FLOW</parameter>
                </boundary_condition>
            </boundary_conditions>
        </process_variable>
    </process_variables>
    <nonlinear_solvers>
        <nonlinear_solver>
            <name>basic_picard</name>
            <type>Picard</type>
            <max_iter>100</max_iter>
            <linear_solver>general_linear_solver</linear_solver>
        </nonlinear_solver>
    </nonlinear_solvers>
    <linear_solvers>
        <linear_solver>
            <name>general_linear_solver</name>
            <lis>-i bicgstab -p jacobi -tol 1e-20 -maxiter 10000</lis>
            <eigen>
                <solver_type>SparseLU</solver_type>
                <scaling>true</scaling>
            </eigen>
        </linear_solver>
    </linear_solvers>
</OpenGeoSysProject>
  1. Run the model.

model.run_model(logfile=temp_dir / "out.log")
OGS finished with project file /tmp/tmpclvdkfizfeflow_test_simulation/2D_HT_model.prj.
Execution took 0.4532768726348877 s
Project file written to output.
  1. Read the results and plot them.

ms = ogs.MeshSeries(temp_dir / "sim_2D_HT_model.pvd")
# Read the last timestep:
ogs_sim_res = ms.mesh(ms.timesteps[-1])
"""
It is also possible to read the file directly with pyvista:
ogs_sim_res = pv.read(
   temp_dir / "sim_2D_HT_model_ts_10_t_100000000000.000000.vtu"
)
"""
# Plot the hydraulic head/height, which was simulated in OGS.
hydraulic_head = ogs.variables.Scalar(
    data_name="HEAD_OGS", data_unit="m", output_unit="m"
)
ogs.plot.contourf(ogs_sim_res, hydraulic_head)
plot F feflowlib HT simulation
<Figure size 2520x1080 with 2 Axes>

Plot the temperature, which was simulated in OGS.

ogs.plot.contourf(ogs_sim_res, ogs.variables.temperature)
plot F feflowlib HT simulation
<Figure size 2520x1080 with 2 Axes>
  1. Plot the difference between the FEFLOW and OGS simulation.

feflow_pv_mesh["HEAD"] = feflow_pv_mesh["P_HEAD"]
ogs_sim_res["HEAD"] = ogs_sim_res["HEAD_OGS"]
# Plot differences in hydraulic head/height.
diff_mesh = ogs.meshlib.difference(feflow_pv_mesh, ogs_sim_res, "HEAD")
hydraulic_head_diff = ogs.variables.Scalar(
    data_name="HEAD_difference", data_unit="m", output_unit="m"
)
ogs.plot.contourf(diff_mesh, hydraulic_head_diff)
plot F feflowlib HT simulation
<Figure size 2520x1080 with 2 Axes>
feflow_pv_mesh["temperature"] = feflow_pv_mesh["P_TEMP"]
# Plot differences in temperature.
diff_mesh = ogs.meshlib.difference(
    feflow_pv_mesh, ogs_sim_res, ogs.variables.temperature
)
ogs.plot.contourf(diff_mesh, ogs.variables.temperature.difference)
plot F feflowlib HT simulation
<Figure size 2520x1080 with 2 Axes>

Total running time of the script: (0 minutes 2.018 seconds)